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Abstract: We conduct a survey and �nd that 47% of respondents state they would
sanction free riders in a team production scenario even though the respondent was
not personally a�ected and no direct bene�ts could be expected to follow an inter-
vention. To understand this phenomenon, we de�ne social reciprocity as the act of
demonstrating ones disapproval, at some personal cost, for the violation of a widely-
held norm (for example, don't free ride). Social reciprocity di�ers from reciprocity
because social reciprocators punish all norm violators, regardless of group a�liation
or whether or not the punisher bears the costs. Social reciprocity also di�ers from
altruism because, while the latter is an outcome-oriented act bene�ting someone
else, the former is a triggered response not conditioned on future outcomes. To test
the robustness of our survey results, we run a public goods experiment that allows
players to punish each other. The experiment con�rms the existence of social reci-
procity and additionally demonstrates that more socially e�cient outcomes arise
when reciprocity can be expressed socially. Further we �nd that most subjects who
punish do so to discipline transgressors and helping others is largely a positive ex-
ternality. Finally, to provide some theoretical foundations for social reciprocity, we
show that generalized punishment norms survive in one of the two stable equilibria
of an evolutionary public goods game with selection drift.

JEL Classi�cation Numbers: C79, C91, C92, D64, H41
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SOCIAL RECIPROCITY*

Who sees not that vengeance, from the force alone of passion,
may be so eagerly pursued as to make knowingly neglect every
consideration of ease interest and safety?

David Hume, An Enquiry Concerning the Principles of Morals,
1751

1. Introduction

Despite strong incentives to free ride on others e�orts, individuals in groups facing
social dilemmas (e.g., public goods, common pool resources, and team produc-
tion) appear to be particularly adept at attenuating incentive problems without
external intervention. Communities often develop rules that make contributing and
free-riding transparent (Ostrom [1992]), but perhaps more importantly community
members are also often willing to incur costs to monitor and sanction behavior that
bene�ts the individual but harms the group. Acts of this kind tend to maintain or
increase the e�ciency of social interactions so one might posit that monitoring is in
the interests of group members. But the punishment of free riders can also emerge
in situations where the individual costs clearly outweigh any possible bene�ts if (1)
group members are motivated by reciprocity, in which case they reciprocate the
costs imposed by free-riders, or if (2) group members are motivated by altruism, in
which case they punish to bene�t others.

However, it is unclear where the boundaries of retribution, reciprocity, and
altruism end, especially when communities grow and group boundaries blur. For
this reason we propose the following taxonomy of the reciprocal and altruistic mo-
tivations for punishment. To clarify concepts we borrow the framework for charac-
terizing normative behavior developed in Elster [1989]. On one hand, norm-driven
behavior can be separated from other types of behavior because norms do not cause
people to act for instrumental reasons. That is, norms are not outcome-oriented.
In other words, people who follow norms react to stimuli without considering the
possible strategic implications of their actions. For example, norm-driven people
who intervene when a stranger needs help do not do so because they anticipate
some reward will accrue to them or anyone else (i.e., they don't consider possible
future bene�ts) but because it seems like the right thing to do. On the other hand,
outcome-oriented people operate via backwards induction and perpetrate acts now

* We thank Okomboli Ong'ong'a for research assistance and the members of
the junior faculty research seminar at Middlebury College for thoughtful comments
on an earlier version of this work. Middlebury College and the National Science
Foundation (SES-CAREER 0092953) provided �nancial support.
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with the hope that these acts will have predictable and bene�cial future conse-
quences.

Limiting our attention to social sanctions and punishment, we identify �ve
distinct behavioral types by di�erentiating reciprocal from altruistic reasons for
punishment, and norm-driven from outcome-oriented motivations for action. We
think of the now classic Tit-for-Tat-er or conditionally cooperative person as being
reciprocal and outcome-oriented. The reason is that models of conditional cooper-
ation usaully rely on games being repeated and agents having su�ciently long time
horizons so that tit-for-tat is established, via the Folk Theorems, as enlightened
self-interest.

Likewise, we realize that many altruistic acts occur for instrumental reasons.
Speci�cally, Samaritans punish asocial individuals because they anticipate that pun-
ishment will cause the latter to change their behavior in the future and this will
in turn bene�t others. We di�erentiate Samaritans from what Saints by contrast-
ing the formers' altruistic, but instrumental, use of punishment from the latters'
norm-driven or moral reasons to punish. Saints punish asocial types because asocial
people inict harm on society, in general, rather than because saints want to help
any person in particular. In short, the saintly norm says, \Help people in distress
even if doing so entails punishing some people."

This leaves norm-driven, reciprocal motivations for punishing free-riders. We
argue that Reciprocators follow a norm that requires subscribers to punish devia-
tions from widely held conventions. That is, reciprocators do not punish with the
future consequences of their actions in mind, but to sanction rule-breakers. The
following table summarizes our taxonomy:

Reasons to Punish

Reciprocity Altruism

Outcome-Oriented Tit-for-Tat-ers Samaritans
Motivations for Action

Norm-Driven Reciprocators Saints
Strong Reciprocity
Social Reciprocity

In this paper we are interested in understanding the origins, limits, and social
implications of individuals who incur costs to express their disapproval of asocial be-
havior. However, rather than surveying all the explanations of punishment de�ned
above, we wish to focus on building a case for norm-driven reciprocal explanations.
Speci�cally, we hope to shed light on why individuals engage in costly acts to punish
asocial agents when the punisher has been directly harmed and when neither the
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punisher nor her group has been directly harmed.
To be as precise as possible, we further distinguish between two types of

norm-driven reciprocal behavior based on group boundaries. Strong Reciproca-
tors (Bowles and Gintis [1999], Gintis [2000], Sethi [1996]) punish those members
of their ingroup that free-ride where an ingroup is loosely de�ned as the subset of
individuals who bene�t from a speci�c public good that they can all contribute to.
Social Reciprocators, on the other hand, punish free-riders without regard to group
boundaries and may therefore punish free riders in group to which they can neither
contribute to nor bene�t directly from. Social reciprocity di�ers from strong reci-
procity because social reciprocators punish all norm violators, regardless of group
a�liation or the social distance between punisher and rule breaker. Further, we
hypothesize that the trigger for punishment by strong reciprocators is the cost im-
plicitly imposed by a free-rider on the group (e.g., a public good is provided at
a lower level), while the trigger for social reciprocity is simpler. Social reciproca-
tors just punish anyone who violates a contribution norm, and need not be harmed
directly by the free-rider.

Another way of thinking about the relationship between strong reciprocity and
social reciprocity is that social reciprocity is a generalization of strong reciprocity
when group boundaries are fuzzy. There are plenty of examples of fuzzy group
boundaries. One example would be a neighborhood within a city. In many cases, it
is not obvious where one neighborhood starts and another ends. Another example
may arise in team production when multiple teams occupy the same shop oor.
Strong reciprocity dictates that members of a speci�c team punish free riders from
that team only and disregard what happens in other teams. By contrast, social
reciprocity requires people to sanction all shirkers regardless of what team they
work in.

More examples will help illustrate what we call social reciprocity. Psychologists
and sociologists have long been interested in understanding personally costly acts
that bene�t others. A subset of this vast literature, motivated by the infamous
1964 murder of Kitty Genovese in Queens, focuses on bystander intervention in
situations in which someone is breaking an obvious rule. Two studies (Borofsky
et al. [1971], Shotland and Straw [1976]) demonstrate that a signi�cant number
of people will intervene in a seemingly severe altercation between two people even
though the one to intervene is not being harmed, nor is there any reason to expect
that the one to intervene will receive any payo� from doing so. In Borofsky et al.,
pooling across treatments, 29% of bystanders intervene in a situation in which two
confederates of the experimenters stage an altercation that escalates in to a physical
�ght. Shotland and Straw show that 65% of bystanders intervene when a stranger
(a male confederate) assaults a woman (female confederate). However, they also
show that only 19% intervene when the two confederates appear to be married.
The explanation they o�er is in terms of costs to intervene. Bystanders reason that
strangers are much more likely to run o� when confronted than are husbands who
are more likely to stay and �ght.
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A third example of social reciprocity comes from Latane and Darley [1970]. In
this experiment, subjects are asked to wait in a room to be interviewed. Also in
the room is a confederate who, when the experimenter leaves, steals what remains
of the show-up fee fund. The dependent variable is the probability that subjects
report the theft when the experimenter returns. Notice, at this point the subjects
have been paid their show-up fee and therefore su�er no loss from the theft which
means strong reciprocity should not be triggered, nor should they expect a reward
for turning the confederate in and so instrumental reasons for acting should not play
a role. Furthermore, the potential cost of turning in the confederate is high (i.e.
the confederate may retaliate). Therefore, neither tit-for-tat reasoning nor strong
reciprocity can explain why someone would report the theft. Regardless, in 50% of
the cases that subjects reported noticing the theft, they turned in the confederate.

Identifying and understanding socially reciprocal behavioral types that indis-
criminately punish deviations from widely held norms is important because soci-
eties in which such behavior is present will be more cooperative, provide public
goods more e�ciently, be better able to complete contracts in information-poor
environments, and extract from common pool resources more conscientiously than
both non-reciprocal societies and societies based on standard notions of reciprocity
alone. Provided free riders react to punishment by contributing more and ful�lling
commitments, societies in which people punish all rule breakers do better because
antisocial members will be caught more often and punished more widely than so-
cieties characterized by no reciprocity or societies based on standard, tit-for-tat or
strong notions of reciprocity.

While the psychological experiments mentioned above provide evidence that
people will intervene in potentially costly situations in which people break rules,
we are more interested in situations that have direct economic importance. To
see whether people will intervene in a production environment such as the team
production example mentioned above, we conducted a survey with college students
which placed the respondent in a team production setting. We asked students to
respond to questions about how to deal with free riding in three di�erent vignettes.
In one scenario, Strong Reciprocity, the respondent worked in a team of four where
one other team member shirked and this imposed a cost on the team. In a second
scenario, Social Reciprocity (Low Cost), the respondent, again, worked in a team,
but this time was asked whether he or she would intervene and sanction a shirking
member of a di�erent team whos shirking had no e�ect on the respondents com-
pensation. Lastly, the third scenario was identical to the second except we added a
line that stated that the shirker intended to retaliate if turned in. We call this the
Social Reciprocity (High Cost) scenario.1

Table 1 highlights the important results from this survey. We �nd that there
is consensus across the treatments that the shirker should be punished even in the

1 See Appendix A for the exact wording of each vignette.
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two situations in which the respondent would have no material interest in seeing the
shirker punished. Further, in the strong reciprocity scenario we see that most people
(90would intervene and sanction the shirker themselves. As one would expect if the
population is heterogeneous and some people consider the bene�ts of punishing, the
fraction of people who say they would intervene in either social reciprocity scenario
is substantially lower. Regardless, we �nd that a substantial number of people say
they would intervene in an economically important situation in which they were
neither harmed nor would they expect future bene�ts.

[Insert Table 1 About Here]

As a general test of our hypothesis that intervention is caused by norm violations,
we analyzed other responses of those who said they would intervene in either of
the social reciprocity scenarios. Speci�cally, we also asked whether the respondent
agreed that by shirking, the person broke an unstated rule (i.e., a norm or conven-
tion) and whether the respondent would personally feel badly if he or she did not
intervene (i.e., is the intervention norm internalized). The general results for our
sample of 49 students are summarized in the following ordered probit regressions -
the data were coded using a seven-point lIkert scale - with standard errors reported
in parantheses.

Punish (Low Cost) = 0:58BreakNorm� 0:06Internalized

(0:21) (0:21)

PseudoR2 = 0:06

�2 = 10:12

Punish (High Cost) = 0:60BreakNorm+ 0:16Internalized

(0:18) (0:22)

PseudoR2 = 0:10

�2 = 15:36

In line with the social reciprocity hypothesis, respondents say they will punish
shirkers in the both cost scenarios because the shirkers are violating a work norm
(p < 0:01), but it does not appear that the social reciprocity norm has been inter-
nalized by the respondents. Feeling badly for not intervening does not cause our
average respondent to punish someone shirking in another work team.

While we feel our survey results are suggestive, the potential di�erence be-
tween punishing when called on to do so and simply saying one would punish raises
concerns about hypothetical biases. To bolster our case for social reciprocity we
proceed as follows. In the next section we present a summary of the existing ev-
idence supporting the role of reciprocity-based monitoring regimes in both �eld
settings and in the experimental lab. The following �ve sections outline the design
and results of an experiment we conducted to test for social reciprocity in an en-
vironment where it is costly to punish. In the penultimate eighth section, we then
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provide some theoretical foundations for social reciprocity by showing that agents
who punish outgroup norm violators survive in one of two stable equilibria of an
evolutionary public goods game with drift. Section 9 then o�ers some concluding
thoughts.

2. The Existence of Reciprocity-Based Monitoring Schemes

In this section we summarize the existing evidence that suggests people, facing
social dilemmas, engage in peer monitoring. We will consider evidence from both
experiments and �eld studies. While the experiments we discuss were designed
only to test for peer monitoring within speci�c groups, our examples from the �eld
suggest that monitoring may transgress group boundaries. This fact provides the
impetus for studying social reciprocity directly.

Peer monitoring has been tested experimentally in two speci�c game environ-
ments, common pool resource experiments where participants contribute by showing
restraint when extracting from a commons and voluntary contribution experiments
in which participants decide whether or not to contribute to a public good, the
bene�ts of which are shared by the entire group. Ostrom et al. [1992], using a
common pool resource design, were the �rst to demonstrate e�ciency gains from
peer monitoring. Their results showed that participants were able to sustain signif-
icant e�ciency gains when they were allowed to punish those who extract too much
from the commons. These �ndings were later extended in Ostrom et al. [1994] and
replicated in Moir [1998].

The �rst public goods experiment incorporating peer monitoring was conducted
by Fehr and Gaechter [2000] who con�rm a reciprocity-based theory of play in pub-
lic goods games originating in Andreoni [1988]. Andreoni's experimental design
is noteworthy because it was able to di�erentiate learning from reciprocity. More
speci�cally, the design had participants play a multi-period voluntary contribution
game twice in a row (without knowing there would be a second game). The �rst
play of the game resulted in the standard decay of contributions which might sug-
gest that players learned to free ride. However, instead of starting at low levels of
contributions, the second play began with contributions signi�cantly higher than
at the end of the �rst play suggesting that, rather than learning to free ride, par-
ticipants withheld contributions in the �rst play to get back at free riders. When
allowed to directly punish the other group members, Fehr and Gaechter showed
that free riders are punished and contributions increase.

The work of Fehr and Gaechter has subsequently been replicated and extended
in a number of interesting directions. Bowles et al [2001] develop a reciprocity-
based model of team production which predicts punishment in equilibrium and test
the model experimentally. Their results indicate that the propensity to punish a
shirking team member is directly proportional to how much harm the shirker inicts
on the punisher and that shirkers respond to punishment by contributing more in
the future. Additionally, Carpenter [2001] shows the e�ectiveness of peer monitoring
need not be attenuated in large groups. Page and Putterman [2000] also con�rm
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that punishment is used to maintain or increase contributions to a public good and
show that communication among players, which usually increases contributions,
has mixed e�ects when combined with sanctions. Finally, Sefton et al [2000] ran an
experiment in which players could reward and sanction other players. When both
rewards and sanctions are allowed, they show that initially, rewards are used, but
by the end of the experiment rewards abate and players rely mainly on sanctions.

Summarizing the results of previous experiments, we see that peer monitoring
occurs and can be explained by the existence of reciprocally-motivated players who
punish players who inict costs on them (e.g. reduced payo�s from the public good)
by free riding.

Although the evidence is less direct than that generated in the experimental
lab, �eld studies of common pool resources, team production, and on a larger scale,
neighborhoods also suggest that free riding and antisocial behavior can be controlled
by peer monitoring. For example, Acheson [1993] illustrates how members of small,
local �sheries prevent over-extraction by relying on endogenously evolved norms
(that are often illegal) to punish over-extractors. Likewise, the Craig and Pencavel
[1995] study of plywood cooperatives and the Ghemawat [1995] paper on a steel mini
mill show that productive teams control shirking endogenously without the need of
supervisors. Lastly, Sampson et al [1997] show that, controlling for previous violence
and individual characteristics, community monitoring, which they term collective
e�cacy, can explain di�erences in the amount of antisocial behavior occurring in
di�erent neighborhoods of Chicago. In short, case and �eld studies of actual social
dilemmas indicate that groups regulate free riding endogenously and, given existing
experimental results, the most parsimonious explanations are reciprocity-based.

The study of Sampson et al is particularly interesting to us because neighbor-
hoods are often populated with relatively large groups and are often distinguished
by fuzzy borders while �sheries and work teams are generally smaller and more
well de�ned. It follows that egoistic incentives to monitor in neighborhoods are low
because the bene�ts of monitoring are di�use. This phenomenon, together with our
survey results from section 1, suggest that monitoring free riders and community
policing, in general, transgress blurry group boundaries. Therefore, the apparent
e�ciency of selected communities can not be explained by egoistic reasons to pun-
ish free riders or narrowly de�ned notions of reciprocity based on the intimacies of
small groups in which reciprocators punish transgressors who impose costs on them
directly.
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3. A Social Reciprocity Experiment

We designed a public goods experiment to test for the existence of social reciprocity
and to di�erentiate it from other theories of punishment (i.e. tit-for-tat, Samar-
itanism, and sainthood). While our design is based on the standard voluntary
contribution mechanism originally used in Isaac et al [1984], to test whether play-
ers will punish free riders we allow players to monitor the decisions made by other
players and sanction them at a cost. To di�erentiate social reciprocity from other
punishment explanations we developed additional design features that provided a
game environment in which only players who are not outcome-oriented and who
dont respond to the material costs imposed on them would punish a subset of free
riders. The speci�cs of our experiment are as follows.

We recruited ninety-six participants (thirty-�ve percent were female) in eleven
experimental sessions. The participants were assigned to twenty-four four-person
groups and each participant remained in the same group for all ten periods of the
experiment. The fact that the game lasted only ten periods was common knowledge.
Participants earned an average of $16.55 including a $5 show-up fee and a typical
session lasted slightly less than an hour.

There were three treatments: a replication of the standard voluntary con-
tribution game (VCM) which we use as a control on our procedures (4 groups), a
replication of previous peer monitoring experiments (Strong) in which players could
monitor and sanction other members of their group (6 groups), and our social reci-
procity treatment (Social) in which players could monitor and punish all the other
players in a session, but they only bene�ted from their groups contribution to a
public good (14 groups).

The payo� function for the social reciprocity treatment was similar to the peer
monitoring incentive structure (see Bowles et al [2001]), but we augmented it to
account for what we will call outgroup punishment. Outgroup punishment occurs
when a member of one group sanctions a member of the other group. Likewise,
ingroup punishment occurs when members of a group punish each other. In the
VCM treatment no sanctions were allowed. In the Strong treatment no outgroup
sanctions were allowed and players saw only the contributions of their group mem-
bers. But, in the Social treatment participants saw the contributions of all players
and could punish any other participant in the session. Punishment was costly;
players paid one experimental monetary unit (EMU) to reduce the gross earnings
of another player by two EMUs.2

Imagine n players divided equally into k groups, each of whom can contribute
any fraction of their w EMU endowment to a public good, keeping the rest. Say
player i in group k free rides at rate 0 < �k

i < 1 and contributes (1 � �k
i )w to the

public good, the bene�ts of which are shared only by members of group k. Each

2 The instructions referred to \reductions" with no interpretation supplied.
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players contribution is revealed to all the other players in the session, who then can
punish any other player at a cost of 1 EMU per sanction. Let sij be the expenditure
on sanctions assigned by player i to player j (we force sii = 0). Then the payo� to
player i in group k is:

�k
i = [�k

i + (n=p)m(1� �k)]w �
X

sij � 2
X

sji

where �k � (
P

�k
i )=n is the average free riding rate in group k,

P
sij is player

i's expenditure on sanctions and 2
P

sji is the reduction in i's payo� due to the
total sanctions received from the rest of the players. The variable m is the marginal
per capita return on a contribution to the public good (see Ledyard [1995]). In all
sessions m was set to 0.5 and w was set to 25 EMUs so that the contribution rate
also measured how e�ciently the public good was provided.

With m = 0:5, the dominant strategy is to free ride on the contributions of the
rest of one's group (i.e. �k

i = 1 for all i) because each contributed EMU returns
only 0.5 to the contributor. Also notice that if everyone in a four-person group
contributes one EMU, they all receive a return of 2 EMUs from the public good.
Therefore, these incentives form a social dilemma - group incentives are at odds
with individual incentives. Considering punishment, because sanctions are costly
to impose and their bene�t cannot be fully internalized (ingroup) or cannot be
internalized at all (outgroup) by the punisher, it is incredibleand therefore can not
be a component of any subgame perfect equilibrium. Because punishment is an
incredible threat, no one should fear it and therefore the only subgame perfect
equilibrium in this game is where everyone free rides and nobody punishes. We feel,
these incentives provide a stringent test of social reciprocity. In this environment
social reciprocity is expressed when players punish free riders outside their groups.
Outgroup punishment can not be explained by strong reciprocity because free riders
in other groups inict no harm on the punisher. Outgroup punishment can also not
be explained by tit-for-tat because there is no possible future bene�t.

In the Social treatment each session was composed of two separate groups
playing simultaneously. A session lasted ten periods and each period had three
stages which proceeded as follows. 3 In stage one players contributed any fraction
of their 25 EMU endowment in whole EMUs to the public good. The group total
contribution was calculated and reported to each player along with his or her gross
payo� for the period. Participants were then shown the contribution decisions of
all the other players in the session. Figure 1 is a screen shot of what participants
saw at the second stage. Players imposed sanctions by typing the number of EMUs
they wished to spend to punish an individual in the textbox below that players
decision. After all players were done distributing sanctions, the experiment moved

3 The participant instructions are provided in Appendix B.
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to stage three where everyone was shown an itemized summary of their net payo�
(gross payo� minus punishment dealt minus punishment received) for the period.

[Insert Figure 1 About Here]

4. Does Social Reciprocity Exist?

The �rst question we wish to answer is whether our participants (or a signi�cant
fraction of them) exhibit social reciprocity. Similar to other studies of punishment
in social dilemma games, an overwhelming majority of our participants sanctioned
another player at least once. Speci�cally, 82% of our subjects sanctioned ingroup
and 50Hence, a preliminary look at our data suggests half our participants exhibit
some degree of social reciprocity - clearly a signi�cant number.

Figure 2 presents a summary of our three treatments. The vertical axis mea-
sures (1) the fraction of the individual endowment (25 EMUs) contributed to the
public good, on average, and (2) the fraction of a punishing players gross earn-
ings spent on sanctioning other players, on average. As one can see, our baseline,
VCM treatment replicates the standard decline in contributions seen in many public
goods experiments (see Ledyard [1995] for a survey). This implies there is noth-
ing strange about our protocol or subject pool. We also see that peer monitoring
(i.e. restricting players to ingroup punishment only) largely maintains the initial
level of cooperation. This behavior is consistent with prior peer monitoring experi-
ments (see Bowles et al [2001], Page and Putterman [2000], and Sefton et al [2000]
in particular). Interestingly, and con�rming our prior concerning the implications
of social reciprocity, contributions are highest when players can punish free riders
both inside and outside their groups. Further these contribution di�erences are
all signi�cant using means tests and Kolmogorov-Smirnov tests for distributional
di�erences in the pooled data.4 However, there appears to be an end-game e�ect
in contributions. Contributions drop substantially from round eight to round ten
in both punishment treatments, but players in the Social treatment react less to
the endgame. Despite the end-game e�ect, our �rst major result is that social
reciprocity exists and leads to increased individual contributions to a public good.

[Insert Figure 2 About Here]

Concerning punishment expenditures, the �rst thing to notice is that our Strong
treatment seems to elicit more ingroup punishment than the Social treatment. How-
ever, one should be careful drawing this conclusion because, as was just mentioned,
contributions are signi�cantly higher in the Social treatment. This means less pun-

4 In fact, the smallest t value was 3.95 testing di�erences in the Social and
Strong means (p = 0:0001) and the lowest KS statistic was 0.16 (p = 0:0005) which
compares the distributions of Social and Strong contributions.
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ishment was warranted.5 Our second observation about punishment is, within the
Social treatment, it appears players spend more resources punishing ingroup than
outgroup players. However, while this appears to be the case when looking at
�gure 2, the pooled average di�erence between ingroup and outgroup sanctions (in-
cluding all those cases when no punishment was levied) is not highly signi�cant,
t = �2:15; p = 0:03 and the two types of punishment are not distributed di�er-
ently, KS = 0:03; p = 0:14. Hence, we conclude that ingroup punishment is only
marginally greater than outgroup punishment in our Social treatment which begets
the question: Is there a common determinant of ingroup and outgroup punishment?
We return to this question below.

However, to show that social reciprocity, as we de�ne it, exists we simply need
to show that outgroup punishment occurs, and it does. The simple test of whether
the mean level of outgroup punishment including all the cases where people did
not punish outgroup (but not controlling for contributions) is signi�cantly greater
than zero shows we can not reject the hypothesis that social reciprocity exists,
t = 8:57; p < 0:01.

We also have other evidence pointing to the existence of social reciprocity. In
both punishment treatments, players spend a signi�cant portion of their earnings to
punish free riders (both in- and outgroup) in period ten when there clearly can be
no e�ect on future contributions. This fact should eliminate and outcome-oriented
reasons for punishment including Samaritanism.

5 Without controlling for contributions, ingroup punishment was signi�cantly
higher in the Strong treatment, t = 3:52; p = 0:0004;KS = 0:19; p < 0:01.
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5. Propensities to Punish

Now that we have established that social reciprocity exists, we wish to examine its
origins. In particular, we are interested in what triggers punishment, and in get-
ting a more accurate measure of the population distribution of social reciprocators.
To do so we conducted a regression analysis of player punishment decisions. Our
experiment generates a panel of punishment choices and to account for individual
heterogeneity we add random e�ects to all relevant regressions.

The �rst question we ask is, what are the determinants of punishment? The
answers to this question are summarized in the �rst equation in table 2. FreeRide
measures the fraction of the endowment a player keeps, Outgroup equals one when
the player is deciding how much to punish some outgroup player, and Strong is one
to di�erentiate players in the Strong treatment where outgroup punishment was
not allowed. Hence, our reference decision maker is a player deciding how much to
punish someone else in his or her group when participating in the Social treatment.

[Insert Table 2 About Here]

The coe�cient on FreeRide is highly signi�cant (p < 0:0001) indicating punish-
ers take into account whether, and how much someone else free rides. Speci�-
cally, a player can expect that if they contribute one EMU less to the public good
(�FreeRide = 0:04) the average punisher will spend 0.07 EMUs to punish which
will reduce the players gross payo� by 0.14 EMUs. The di�erential gross payo�
of free riding by one more EMU is 0.50 EMUs (the di�erence between keeping
an EMU and contributing it) and including punishment costs the net payo� is
0:50�0:14Punavg, where Punavg is the average number of punishers per free rider.
If everyone else in the free riders group punishes, free riding still pays, but if enough
outgroup players punish too, free riding wont pay. The average number of players
that punish free riders in the Strong treatment is 1.08 and in the Social treatment,
on average, 1.80 players punish free riders.6 Doing the calculations we see that in
either treatment the expected incremental return on free riding is positive, but it is
less in the Social treatment.

There are two other things to notice about this regression. First, the Outgroup
coe�cient is highly signi�cant (p < 0:01) and negative. This suggests that, con-
trolling for how much people free ride, players punish signi�cantly less outside their
group. Second, the coe�cient on Strong is positive but not signi�cant (p > 0:26)
which implies punishment is doled out the same in our two ingroup treatments af-
ter controlling for how badly a player free rides. This second result is important
because it indicates that people think about punishing outside their group in addi-
tion to punishing in their group, not instead of. The signi�cant negative outgroup
coe�cient is important because it suggests that players care less about free riders

6 For now we de�ne a free rider as a player who contributes a third or less of her
EMU endowment.
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who do not have a direct material impact on them. This presents a puzzle, why do
socially reciprocating players punish less outside their group?

This is the point at which our story about the determinants of punishment
becomes more complicated. As our results show, punishment seems to be additively
separable into ingroup and outgroup punishment. The question is whether the
causes of the two components are the same or di�erent. Clearly, strong reciprocity
cant explain outgroup punishment because players in the other group inict no harm
on outgroup punishers, but can social reciprocity explain both. We now turn to an
analysis of this question. If the answer is a�rmative, then we can conclude that
all punishment is triggered by breaking the rules. If the answer is negative, then
we must conclude that the two components of punishment have di�erent causes.
For example, ingroup punishment may be triggered by the harm caused by free
riders and outgroup punishment may be triggered by the violation of a contribution
norm. We begin this portion of our analysis be con�rming di�erences in ingroup
and outgroup punishment.

Call a player's propensity to punish free riders the marginal e�ect of free riding
on a players decision to punish. To measure player's propensities to punish we
calculated individual punishment coe�cients from the following regression for each
of our three punishment conditions:

PunishmentExpenditureij = �+ �iFreeRideij + �

Figure 3 summarizes our results.7 In �gure 3 we report the cumulative distributions
of our individual punishment propensity measures for the Strong treatment, Social
ingroup punishment, and Social outgroup punishment. Fifty-four percent of the
propensities are signi�cantly di�erent from zero at the ten percent level in the
Strong treatment, 58% are signi�cant for the Social ingroup punishment decisions,
and 25% are signi�cant for the Social outgroup decisions.

[Insert Figure 3 About Here]

It appears that the propensities to punish ingroup members in the Social treatment
are similar to the propensities to punish in the Strong treatment. In fact, there are
more non-negative propensities in the Social treatment (74% compared to 67%),
but the average propensities are not statistically di�erent (z = 0:1; p > 0:92) and,
perhaps more importantly, the distributions are not di�erent (KS = 0:14; p > 0:82).
Overall, most players di�erentially punish free riders in their group more, the more
they free ride.

It is also interesting to compare the propensities to punish in ones group to
the propensity to punish outside ones group. Half our participants decided to

7 Two outliers have been deleted to create �gure 3. One � in the Social ingroup
condition equalled 171.48 and a second in the Strong condition equalled 27.82.
However, they are included in the analysis.
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not punish outside their group compared to eighteen percent who did not punish
inside their group. The di�erence in the average propensity to punish is signi�cant
(z = 4:16; p < 0:01) and the ingroup propensities are distributed signi�cantly to
the right of the outgroup propensities (KS = 0:39; p < 0:001). We conclude that
individual players, as well as the average player, punish less severely outside the
group than inside the group.

This analysis also provides us with a second, more conservative measure of
social reciprocity - thirty-eight percent of our participants had positive propensities
to punish outgroup free riders.8

Our measures of the propensities to punish con�rm and add to the mystery
of why social reciprocators react less to outgroup free riding. We now hope to
shed some light on this puzzle. Recall, the hypothesis we are now working from
is that strong reciprocity motivates players to punish free riders because of the
harm they inict and social reciprocity additionally motivates players to punish
free riders simply because they break the rules. To analyze this theory we added
a dummy variable to our punishment analysis. FRdummy takes the value one
when a player contributes less than one third of his or her endowment to the public
good. Our interpretation is that FRdummy indicates that someone has violated the
contribution norm while FreeRide measures the material harm done by free riding.
If players react more to the violation of the norm than to the material harm done,
the FR dummy should be just as good a predictor of punishment as is FreeRide.

Table 2 presents the results. Equation one is the same regression we reported
above. In equation two we substitute the FRdummy variable for FreeRide to
test whether one variable predicts punishment better than the other. The results
are mixed, the coe�cient on FRdummy is less, but it is no less signi�cant than
FreeRide. Further, the magnitudes of the other regressors and R2s dont radically
change suggesting norm violation explains punishment as well as the material harm
caused by free riding.

[Insert Table 2 About Here]

8 Another way to assess di�erences in punishment behavior across treatments is
by comparing what we call predispositions to punish free riders. A players predis-
position to punish free riders is how much they tend to punish free riders after
controlling for how badly the free rider breaks the norm. To calculate players'
predispositions to punish we add individual �xed e�ects to the standard punish-
ment regression. The relative distribution of players predispositions is similar to
the distributions of propensities. The Strong and Social ingroup predispositions
are essentially the same (z = 0:68; p > 0:49;KS = 0:20; p > 0:43) while the Social
ingroup predispositions are distributed higher than in the Social outgroup condition
(z = 2:04; p < 0:5;KSs = 0:45; p < 0:001) indicating players are more watchful of
their group members than they are of outsiders.
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To have a closer look, we separate the data and analyze ingroup punishment and
outgroup punishment individually. 9 Regressions three and four con�rm our sus-
picions about the two components of reciprocity. Only the material harm inicted
by free riding (FreeRide) explains punishment inside a group. However, both the
material harm done by free riding and the fact that a rule has been broken trig-
ger outgroup punishment. In fact, breaking the norm is the more serious reason
for outgroup punishment (i.e. the coe�cient on FRdummy is more highly signif-
icant). Also notice that there are two ways to interpret the FreeRider variable.
So far we have interpreted FreeRider as measuring the cost imposed by a free
rider on reciproctors, but a second interpretation is that it just measures how egre-
giously someone violates the norm.10 Given both FreeRider and FRdummy are
signi�cant causes of outgroup punishment, the most reasonable interpretation of
FreeRide might be the second because we have no reason to believe the cost in-
icted on the other group motivates outgroup punishment, but perhaps how badly
one breaks the norm does matter to social reciprocators.

The following are our conclusions about punishment and reciprocity. First and
foremost, social reciprocity exists. Our conservative measure states that 38% of
people go out of their way to punish norm infractions caused by people who have
no material impact on them, and our least conservative measure notes that 50%
of people punish outside their group at least once. Second, we �nd that social
reciprocity may explain both ingroup and outgroup punishment if we allow that
social reciprocators are mostly motivated by the violation of a norm, but they also
react to how egregiously free riders violate the norm.

9 Regressions one and two include the data from the Strong treatment while
regression three is only on the Social ingroup data and regression four is only on
the Social outgroup data.

10 In fact, Mudd [1968] and Mudd [1972] show that, instead of reciprocating costs
imposed, punishment depends on (i.e. is a linear function of) the degree to which
the perpetrator violates an accepted norm.
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6. The E�ciency of Social Reciprocity

We conjectured at the beginning of this paper that worlds in which social reciprocity
existed would be more cooperative, in general, and would provide public goods more
e�ciently, in particular. In this section we assess to what extent this conjecture is
true and why it might be true. Returning to �gure 2, we �rst note that contributions
are signi�cantly higher in the Social treatment con�rming part of this conjecture -
public goods are provided at higher levels when social reciprocity can be expressed.
But our analysis so far does not allow us to claim they are provided more e�ciently
because we have not yet accounted for punishment expenditures and the costs of
being punished.

We summarize the e�ciency of providing the public good in �gure 4. In �gure
4 the vertical axis measures the ratio of the average net payo� for participants in a
particular punishment treatment to the average payo� in the no-punishment control
experiment. Hence, the heavy line at 1.0 is the benchmark e�ciency of providing
the public good when no punishment is allowed. In principle, punishment is socially
worthwhile only if it generates e�ciency gains over the situation in which no punish-
ment is possible. [Insert Figure 4 About Here]

Early on, perhaps because players are becoming accustomed to the incentive
structure, the e�ciency of the two punishment treatments is lower than our bench-
mark, but the Social treatment is more e�cient than the Strong treatment from
the start. As the experiment progresses, both punishment regimes increase rela-
tive e�ciency, but there is a noticeable levels di�erence between Social and Strong.
Payo�s are always substantially higher in the Social treatment than in the Strong
treatment. Only in period nine is the Strong treatment briey more e�cient than
the control, but starting in period four social reciprocity allows players to achieve
sustained and growing e�ciency gains over the control experiment. However, pe-
riod ten is a disaster in both punishment conditions because free riders, without
foresight, try to take advantage of the endgame and social reciprocators pummel
them.

Why does social reciprocity increase the e�ciency of public goods provision?
We o�er two explanations for why e�ciency is noticeably higher in the Social
treatment. First, free riders are punished more severely in the Social treatment
than in the Strong treatment. As mentioned above, on average, more players
punish a free rider in the Social treatment (1.80 versus 1.08) and the total pun-
ishment received by free riders in the Social treatment is higher. Table 3 lists,
by period, the average payo� reduction charged to free riders in the two treat-
ments. We consider two de�nitions of free riding. Based on previous peer mon-
itoring experiments which �nd that contributing less than the average triggers
punishment, the �rst de�nition we use is a free rider is someone who contributes
less than the group average. The second de�nition is more arbitrary. Here we
say free riders are people who contribute less than one-third of their endowment.

[Insert Table 3 About Here]
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Beginning with the arbitrary measure, we see that punishment is relatively sta-
ble, except for the last two periods, and that free riders are punished more severely
in the Social treatment in seven of the ten periods. Using the deviations from the
average standard, free riders are still punished more severely in the Social treatment
(six of ten periods), but the di�erence is not as extreme as when we considered the
arbitrary measure. We also conducted Wilcoxon and Kolmogorov-Smirnov tests on
the pooled punishment data to con�rm that free riders are punished at higher levels
when social reciprocity is possible.

A second reason why there are sustained e�ciency gains in the Social treat-
ment is that players respond more to punishment when more people are watching.
In table 4 we report the results of regressing players public contributions on lags
of their contributions and punishment received.11 Equation one reveals two things
about our pooled data. First, there is a lot of inertia in contributions. Second,
overall, players respond to punishment by contributing signi�cantly more in the
future. Equation two answers any questions remaining about �gure 2. Controlling
for the amount of punishment received, players are more cooperative in the social
reciprocity treatment. This alone provides a reason why social reciprocity leads
to e�ciency gains. In equation three we examine why players are more coopera-
tive in the Social treatment. The answer is that an increase in punishment in the
Social treatment has a much bigger e�ect when compared with the Strong treat-
ment. In fact, equation three says increased punishment has no e�ciency enhancing
properties in the Strong treatment, all the bene�ts of punishment accrue to Social
players.

We now summarize our e�ciency results. Figure 4 illustrates that our con-
jecture about the e�ciency of social reciprocity is con�rmed - socially reciprocal
worlds provide public goods more e�ectively and more e�ciently. There are two
reasons for this. First, because players will punish free riders outside their group,
free riders are punished more severely in socially reciprocal worlds. Second, our
players respond di�erently to punishment when social reciprocity is present. Specif-
ically, increased punishment has much more of an e�ect on a free rider in the So-
cial treatment than in the Strong treatment. Perhaps, because they are punished
more severely, Social players are quicker to learn that free riding is not acceptable.

[Insert Figure 4 About Here]

11 Because contributions are constrained from below by zero and from above by
the endowment, 25 EMUs, we use the tobit procedure in addition to adding indi-
vidual random e�ects.
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7. Evidence Against Altruistic Punishment

So far we have spent much of our time di�erentiating social reciprocity from strong
reciprocity and because we focus on outgroup punishment, tit-for-tat reasons for
punishment have been controlled for in the design, but we now want to concentrate
on showing that the results we call social reciprocity can not be explained by al-
truism either. We proceed by reviewing three pieces of evidence against altruism.
First, Samaritans would never punish in period ten because no bene�ts could follow
for the other group members, yet there is substantial outgroup punishment in the
last period.

So far we established that Samaritans dont punish outgroup in the last round,
but they may have a reason to punish in earlier periods. We have two additional
pieces of evidence that suggest while there is an altruistic incentive to punish in
periods one through nine, most of the punishment we see is due to social reciprocity.
First, if we can tie the behavior of those players who punish outgroup in period ten
(social reciprocity for certain) to their behavior in periods one through nine then we
can say something about who is most responsible for outgroup punishment during
the rest of the game. We calculated the Spearman rank order correlation between
how much a player punished outgroup in period ten and their propensity to punish
outgroup in periods one through ten and found � = 0:42 (p < 0:01). This correlation
indicates that the players who punished in period ten were also the ones who had
higher propensities to punish outgroup in the rest of the game. Hence, this suggests
that most outgroup punishment comes from social reciprocators, not Samaritans.

However, we also need to rule out saintly punishment. To this end, we con-
ducted a post-experiment survey and asked speci�c questions about players motives
to punish other players. In one question we asked:

Which of the following sentences (if any) best describes your
actions:

a. I reduced the earnings of participants in the other group be-
cause I thought that in later rounds the earnings of participants
in the other group would be higher as a result.

b. I reduced the earnings of participants in the other group
because I wanted to get back at those who did not contribute.

c. Both a. and b.

d. None of the above. Please explain:

The only reason players responded with (d) was because they did not punish anyone.
Response (a) is the saintly altruistic response and (b) is the social reciprocity re-
sponse. The responses were distributed according to the pie chart in �gure 5. Social
reciprocators outnumber saints four to one and those who report being somewhat
motivated by social reciprocity outnumber pure saints approximately six to one.

[Insert Figure 5 About Here]
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We conclude that social reciprocity explains the majority of outgroup punish-
ment. Tit-for-taters would never punish outside their groups, Samaritans would
never punish in the last period, those social reciprocators who punish in the last
period account for most of the outgroup punishment in the other nine periods,
and simply asking people why they punish outgroup reveals that social reciprocity
motivations outnumber saintly motivations at least four to one. The existence of
outgroup punishment and the e�ciency gains to the community generated by social
reciprocity leads to the following interesting result. Our data suggest that social
reciprocity exists and is e�ciency enhancing, but the e�ciency gains are largely
an unintended byproduct because socially reciprocal agents dont punish with the
purpose of increasing contributions in the future.

8. Towards A Model of Social Reciprocity

Our experimental results are unambiguous: in both the statistical and substantive
senses of the word, there is signi�cant punishment of free riders, both within and
across groups. To provide some theoretical foundations for these results, we con-
struct a \miniature social reciprocity game" or MSR consistent in broad terms with
our experimental environment. Suppose that at each moment in continuous time,
nature selects four individuals at random from a large (technically, in�nite) popu-
lation and then divides each foursome into pairs. In the �rst stage of MSR, each
of the two pairs plays its own public goods game, in which individuals must decide
whether to contribute all or none of their endowment of 50 EMUs to a common
pool with an MPCR of 50 percent. The normal form for each pair in the �rst stage
is therefore:

Contribute Free Ride

Contribute 75; 75 37:5; 87:5

Free Ride 87:5; 37:5 50; 50

The choices of all four individuals are then revealed to all and, in the second stage,
contributors must decide (a) whether or not to enforce a \contribution norm" and
punish free riders, and (b) which free riders - ingroup, outgroup or both - to punish.
We shall assume, for purposes of simpli�cation, that those who punish outsiders,
the social reciprocators, cannot \pick and choose": for example, a contributor who
is committed to norm enforcement both within and across groups and is matched
with three - one ingroup and two outgroup - free riders must sanction all three.
Each punishment act is assumed to cost a contributor 10 EMUs, and to reduce a
free rider's payo� by 20 EMUs.

We shall also suppose that individuals are restricted to �ve pure strategies:
free ride and do not punish, contribute and do not punish, contribute and punish

20



ingroup free riders, contribute and punish outgroup free riders, and contribute and
punish all free riders. That is, free riders cannot or will not punish contributors
or other free riders and contributors cannot or will not punish other contributors,
restrictions that we believe are consistent with the motivations of our experimental
subjects. Consider, for a moment, MSR's two symmteric Nash equilibria or SNEs.
In the �rst, no one contributes, but in the second, all four randomize over the four
contribution strategies such that p3+2p4+3p5 > 0:625, consistent with the intuition
that to deter free riders, the expected punishment must exceed some lower bound.
(For a derivation of the SNEs, see Appendix C.)

The �rst equilibrium is observationally equivalent to MSR's unique subgame
perfect equilibrium and, to the extent that the latter constitutes a benchmark of
sorts, the reason that punishment of either kind is considered anomalous: if the
punishment act is not costless, then no threat to sanction free riders in the second
stage should be considered credible, in which case there should be no reason to
contribute in the �rst.

Punishment is observed, however, and it is important to recall that it has two
important properties. First, it cannot be rationalized on the basis of the Folk Theo-
rem(s): the foursomes are dissolved at the end of each period, so that no one should
expect to be matched with a particular individual from a previous foursome or, for
that matter, with a particular member of the population as a whole, in subsequent
rounds. In other words, there are no opportunities to engage in \conditionally re-
ciprocal" behavior. Second, as Carpenter and Matthews [2002] have underscored,
if some of this punishment is inicted on outsiders, it cannot all be attributed to
strong reciprocity (Gintis [2000], Bowles and Gintis [2000]), the predisposition to
cooperate and punish those who have reduced one's own welfare.

From the perspective of the model, then, the question is then whether some el-
ements of the continuum of SNEs could satisfy some other, perhaps less restrictive,
notion of equilibrium. To be more precise, we are interested in whether socially
reciprocal behavior is ever evolutionarily stable. It is therefore important to note
that, as we have formalized it, MSR is an extension of what Axelrod [1984] �rst
called the \norms game," a framework also featured in the work of G�uth and Kliemt
[1993], Binmore and Samuelson [1994] and Sethi [1996]. In Sethi's [1996] two per-
son (re)formalization of Axelrod [1984], for example, the �rst stage is a standard
prisoner's dilemma and in the second, each of the two is free to punish the other,
at some cost to herself, no matter what the other's �rst round behavior. He ob-
serves that under reasonable parameter restrictions, there is one subgame perfect
equilibrium, in which neither cooperates or punishes, and nine Nash equilibria in
pure strategies. More important, he also shows when each of the pure strategies is
identi�ed with a sub-population of players, and the model is enhanced to include
a ninth sub-population, a set of best responders blessed with perfect recognition,
there are two evolutionary stable states (ESS) and one neutrally stable state (NSS).
The �rst ESS is monomorphic: \venegeful cooperators," those who cooperate and
punish defection, comprise the entire population. In the second, polymorphic, ESS,
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\bullies," or defectors who punish other defectors, and best responders co-exist in
�xed proportions. A continuum of population states, in which an indeterminate
mixture of \passive defectors," those who defect and never punish, and best re-
sponders co-exist comprise the NSS. If the third is consistent with, and close(r) in
spirit to, subgame perfection, the �rst is consistent with the existence of \strongly
reciprocal norms," and simulation results based on the so-called replicator dynamic
(Taylor and Jonker [1978]) suggest that both outcomes are locally stable, with non-
negligible basins of attraction.

Sethi's [1996] model therefore provides a plausible rationale for strong reci-
procity, but it remains to be seen whether socially reciprocal behavior can also be
robust. The issue is more complicated than �rst seems, however, because the litera-
ture on ESS's in multi-player games that do not involve \playing the �eld" remains
thin: in Broom, Cannings and Vickers' [1997] seminal paper, for example, even
symmetric games exhibit \levels" of ESSs, and some of the canonical properties of
pairwise models - the Bishop-Cannings Theorem, for example - do not generalize.
More important, perhaps, even if contribution were evolutionarily stable in some
weak(er) sense, there is reason to be concerned that, in the evocative language of
Binmore and Samuelson [1999], such outcomes would comprise a \hanging valley"
vulnerbale to the presence of \drift."

Following Binmore and Samuelson [1999], we shall instead consider the evolu-
tion of pure strategies under a perturbed selection mechanism - that is, a selection
mechanism subject to drift - as the amount of drift tends to zero. Our own approach
is unusual, however, inasmuch as we provide behavioral microfoundations for both
the selection and drift functions. In particular, we suppose that there are �ve sub-
populations - free riders, second order free riders, strong reciprocators, pure social
reciprocators and social reciprocators - associated with each of the �ve pure strate-
gies and that within each of these, there exist two sorts of \reinforcement-based
learners," one more common and more sophisticated than the other. The more so-
phisticated are assumed to \sample and imitate" �a la Nachbar [1990], in which case
the unperturbed selection mechanism assumes the form of a scaled replicator dy-
namic, as con�rmed below. The less sophisticated, on the other hand, are assumed
to be aspiration-driven learners of the sort described in Carpenter and Matthews
[2001], where the di�erence reects how available information is, or is not, used,
either in the lab or the outside world: imitation requires that some, if not all, of
the available information be processed, while our version of the aspiration parable
does not.

To be more precise, suppose for the moment that time is marked in discrete
intervals of length � and that at the end of each of these periods, a fraction �
of the entire population re-evaluates its current performance.12 A fraction 1 � �

12 If instead we had assumed that the fraction was k� < 1, the results would be
identical, modulo a rescaled time variable.
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of these are assumed to \sample" another member of the population - that is,
observe or perhaps be told their behavior and outcome - and to switch, and therefore
imitate, whenever (a) the sampled payo� is higher, and (b) the di�erence in payo�s
exceeds some switching cost c, the value of which is a random variable with uniform
distribution over [0; �c]. To ensure that the likelihood of a switch is always less than
or equal to one, it is further assumed that �c � 67:5. The remaining � percent do not
sample but rather compare their current outcome to some aspiration level a, the
value of which is also assumed to be a random variable, with uniform distribution
over [0; �a], where �a � 87:5. If it equals or exceeds this aspiration, the agent does
not change her behavior, but if it falls short, she switches to another. In standard
aspiration-based models (Binmore, Gale and Samuelson [1995], for example) the
likelihoods that behaviors will be adopted are equal to their current population
shares, but this assumes (a) the shares are observed and processed and, perhaps
more important, (b) that the dissatis�ed will sometimes switch back to their initial
choices, which seems implausible to us. Modifying the \no switch back model" in
Carpenter and Matthews [2001], we shall instead suppose that those who fall short
of their aspirations will switch to one of the other strategies with equal likelihood.

Under these assumptions, the share pi of the population committed to behavior
i will evolve as follows:

pi(t+�) = pi(t) + (1� �)��c�1pi[
X
j 6=i

pjmax (0; �i � �j)�
X
j 6=i

pjmax (0; �j � �i)]

+ ���a�1[0:25
X
j 6=i

pj(�a� �j)� pi(�a� �i)] (8:1)

The second term, for example, is the net increase in the share of i attributable to im-
itation. Of the (1��)�pi percent of the population committed to i who re-evaluate
their performance each period, a fraction pjmax[0; �j � �i] will sample someone
committed to j 6= i who did better. Given the determination of switching costs, it
follows, therefore, that a fraction (1� �)�pi�c

�1pjmax[0; �j � �i] of population will
switch from i to j 6= i as the result of sophisticated reinforcement, and that the total
number of \defections" from i to all j 6= i will be (1� �)�pi�c

�1
P

j 6=i pjmax[0; �j �

�i]. In a similar vein, a fraction (1� �)�pi�c
�1
P

j 6=i pjmax[0; �i � �j ] of the popu-
lation will switch from j 6= i to i each period as a result of imitation.

The third term is the net increase in the share of sub-population i due to un-
sophisticated learning: the likelihood that someone who is committed to j 6= i falls
short of her/his aspiration level is (�a��j)=�a, so that a fraction ���a�1

P
j 6=i pj(�a�

�j) of the population will be dissatsi�ed with j 6= i, a quarter (0.25) of whom will
then switch to i, and so on.

Since the second term collapses to �i � ��, where �� is the expected population-
wide payo�, (8.1) can be rewritten as:

pi(t+�)� pi(t)

�
= (1��)�c�1pi(�i���)+��a�1[0:25

X
j 6=i

pj(�a��j)�pi(�a��i)] (8:2)
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As �! 0, we have the continuous time version of (8.2):

_pi = (1� �)�c�1pi(�i � ��) + ��a�1[0:25
X
j 6=i

pj(�a� �j)� pi(�a� �i)] (8:3)

and, in the special case of no drift or � = 0:

_pi = �c�1pi(�i � ��) (8:4)

which is a scaled replicator dynamic.
Our principal concern here is the behavior of (8.3), but a simple simulation

exercise based on (8.4) serves to underscore some basic themes. We �rst observe
that, consistent with intuition, the expected payo� to each of the four classes of
contributors will be a function of the proportion p1 of (�rst order) free riders alone:

�2 = 75� 37:5p1

�3 = 75� 47:5p1

�4 = 75� 57:5p1

�5 = 75� 62:5p1 (8:5)

Given the costs of of punishment, it comes as no suprise, for example, that for �xed
p1, second order free riders do better than strong reciprocators, who in turn do
better than pure social reciprocators, or that social reciprocators will be the least
successful of the four. What is important to understand, however, is that social
reciprocators, pure or otherwise, need not vanish because �rst order free riders will
sometimes do (much) worse since:

�1 = 27:5 + 22:5p1 + 60p2 + 40p3 + 20p4 (8:6)

after substitution for �5 = 1� p1 � p2 � p3 � p4.
Consider, for example, the case of an initial \balanced population," in which

pi = 0:20 for all i. The representative second order free rider will receive 75 �
37:5(0:20) = 67:5 EMUs, the strong reciprocator, 65.5, the pure social reciprocator,
63.5 and the social reciprocator, 62.5, but the mean for �rst order free riders is
(just) 56, with a population mean of 63. Given the rules of imitation, some �rst
order free riders and social reciprocators will become second order free riders, a
smaller number will become strong reciprocators, and a still smaller number will
become pure social reciprocators. The �rst order free riders are more vulnerable,
however - the likelihood that the di�erence in outcomes will exceed the costs of
switching is greater - so that it is at least possible that the non-contributors will
be driven to \extinction" before the social reciprocators, in which case the \�tness
di�erential" �i � �� across contributors will vanish. Indeed, simulation of the RD
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from an initial balanced population reveals that (in rounded numbers) p1 ! 0,
p2 ! 0:34, p3 ! 0:26, p4 ! 0:22 and p5 ! 0:18.

This outcome is consistent with the behavior in at least some of our sessions,
but it remains to be seen whether the prediction is robust with respect to drift. We
are more interested, in other words, in the case where � is small than when it is 0.
The problem, of course, is that closed form solutions to (8.3), expressed as a function
of �, are di�cult to obtain. Instead, we �rst computed (with Maple) the rest points
of (8.3) for four di�erent values of the drift parameter, � = 0:10; 0:01; 0:001 and
0:0001, and for �a = �c = 100. The results, together with the eigenvalues for the
relevant Jacobians, are reported in Table 5, and derived in Appendix D.

[Insert Table 5 About Here]

Neglecting the case � = 0:10 for a moment, there are three such rest points, the
characteristics of which are robust with respect to the amount of drift. In the
�rst, there are almost no �rst order free riders, and the proportions of second order
free riders and strong reciprocators are (to two decimal places) 32 and 26 percent,
respectively, with smaller, and almost equal, numbers of the two sorts of social
reciprocators. The second is consistent with standard game theoretic predictions:
the proportion of �rst order free riders increases from 97.7 percent to 99.9 as � falls
from 0.01 to 0.0001, the proportion of second order free riders falls from 1.0 to 0.1
percent, and the proportions of all three sorts of reciprocators are smaller still. The
third is similar to the �rst in the sense that there are few �rst order free riders, but
di�ers inasmuch as more than half, as opposed to a third, of the population are �rst
order free riders.

The case of � = 0:10 is di�erent, however, because there is so much drift that
no sub-population is ever able to dominate: in the second sort of equilibrium, for
example, the proportion of �rst order free riders is less than 65 percent.

As the eigenvalues in Table 5 also indicate, however, while the �rst and second
equilibria are locally stable, the third is not. Figures 6, 7, 8a and 8b illustrate some
of the possible paths. Figure 6, for example, plots the evolution of shares from an
initial \balanced population" - that is, pi = 0:20 for all i - for the benchmark case
� = 0:01, �a = �c = 100. Under these conditions, the shares rapidly converge to the
�rst equilibrium, in which more than two thirds of the population will contribute and
punish those who do not, and in which more than three �fths of this sub-population
are social reciprocators of one kind or another. Furthemore, the proportions are
close, if not equal, to those obtained in the �rst simulation exercise with the same
initial condition but no drift.

[Insert Figures 6, 7, 8a and 8b About Here]

What ensures that the (almost) all contribution outcome will be stable? It is useful
to decompose the selective pressures that exist at this point. In the case where
� = 0:01 - so that p1 = 0:004632, p2 = 0:318817, p3 = 0:258326, p4 = 0:217130 and
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p5 = 0:201095 - the normalized �tness di�erentials pi(�i � ��) are:

p1(�1 � ��) = 0:004632(61:408880� 74:708783) = �0:000616

p2(�2 � ��) = 0:318817(74:826300� 74:708783) = +0:000375

p3(�3 � ��) = 0:258326(74:779980� 74:708783) = +0:000184

p4(�4 � ��) = 0:217130(74:733660� 74:708783) = +0:000054

p5(�5 � ��) = 0:201095(74:710500� 74:708783) = +0:000003

In the absence of drift, then, the representative �rst order free rider does much
worse than all four sorts of contributors, each of whom receives more than the
population mean, so much so that despite the small number of �rst order free riders
to start with, their decrease is substantial. Furthermore, of these, a little more than
60% would become second order free riders and another 30 % would become strong
reciprocators.

So what then prevents evolution toward these two behaviors, which would leave
the population vulnerable to an inux of �rst order free riders? It is the behavior of
aspiration-driven learners which provides the required \o�set." To see this, observe
that the drift terms are:

0:25
X
j 6=1

pj(�a� �j)� p1(�a� �1) = 6:278116� 0:178754 = +6:099361

0:25
X
j 6=2

pj(�a� �j)� p2(�a� �2) = 4:316353� 8:025803 = �3:709450

0:25
X
j 6=3

pj(�a� �j)� p1(�a� �3) = 4:694057� 6:514987 = �1:820929

0:25
X
j 6=4

pj(�a� �j)� p1(�a� �4) = 4:951284� 5:486080 = �0:534796

0:25
X
j 6=5

pj(�a� �j)� p1(�a� �5) = 5:051406� 7:760481 = �0:034186

The numbers con�rm that �rst order free riders are both the one sub-population to
lose from imitation and the one to bene�t from dissatisfaction. Furthermore, of the
four sorts of contributors, second order free riders lose the most \crude learners." To
understand this, we observe that while the likelihood (100� 61:408880=100 � 0:386
or 38.6 %) that the representative �rst order free rider will fall short of her aspiration
level exceeds that of all four other sub-populations, there are so few �rst order free
riders to start with that the absolute number of \defections" will be small. On the
other hand, the likelihoods that crude contributors will become disenchanted are
smaller and similar in size - from 25.2% for second order free riders to 25.3% for
social reciprocators - but because all four, in particular second order free riders,
are much more numerous, the number of defections is much higher. Furthermore,
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because one quarter of all the disenchanted contributors will \experiment" with
non-contribution, �rst order free riders bene�t most. Second order free riders, on
the other hand, are hurt most because more of these switch from, and fewer switch
to, this behavior. Because just one percent of the population are assumed to be
crude learners, these forces cancel one another.

Viewed from another perspective, the assumed nature of drift in this model
implies that at this (equilibrium) point, there is a constant source of new �rst order
free riders. Because these �rst order free riders can expect to earn much less in a
world where almost all others are contributors, however, there is also a constant,
and equal, stream of defections.

Figure 7, on the other hand, plots the evolution of population shares from
the unbalanced initial condition in which �rst order free riders comprise half the
population (p1 = 0:50), second order free riders another 20 percent (p2 = 0:20), and
strong, pure social and social reciprocators 10 percent each (p3 = p4 = p5 = 0:10).
In this case, there is rapid and almost monotone convergence to the no contribution
equilibrium.

Figures 8a and 8b, on the other hand, illustrate one of the more \exotic"
possibilities that follow from the introduction of drift. The initial point is chosen
close to the third, unstable, equilibrium, p1 = 0:02, p2 = 0:54, p3 = 0:21, p4 = 0:13
and p5 = 0:10, and Figure 8a plots the evolution of population shares over the same
time horizon as Figures 6 and 7, a horizon that was su�cient to ensure convergence
in the �rst two cases. There is an almost imperceptible movement in the structure of
the population, with a small increase in the share of second order free riders at the
expense of �rst order free riders, from which one is tempted to infer the existence of
a plateau of sorts. Figure 8b, which provides a (very) long run perspective on the
same dynamics, reveals that such a conclusion would be premature: in short order,
the proportion of �rst order free riders explodes, the proportion of second order
free riders collapses, and the shares settle down, once and for all, at the second, no
contribution, equilibrium. In this case, the model exhibits what is almost a r�egime
shift, from a scenario in which almost all of the players contribute to the public
good to one in which almost none of them do. While we observed a collapse of this
sort in one or two experimental sessions, these were also followed by a \rebirth" of
the contribution norm.

Given a �xed value of �, each of the stable rest points is hyperbolic, so that
small changes in the values of either �a or �c will have small changes on equilibrium
shares, but it is important to ask what would happen if, for example, one of the
parameters doubled in size. This question does not arise when � = 0 because in the
absence of drift, the choice of �c inuences the \speed" of population shares on their
respective time paths but not the properties of these paths. The introduction of
behavioral drift, however, precludes the use of normalized dynamics. Tables 6 and
7 present comparative statics for the model's two stable equilibria for alternative
values of �a and �c in the benchmark case � = 0:01.
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[Insert Tables 6 and 7 About Here]

The results show that when there is not much drift, the equilibrium shares are
not much a�ected, even when �a and �c increase from 100 to 200. Furthemore, the
changes are consistent with intuition. An increase in the value of �c, for example,
causes the expected costs of switching to rise or, in more evocative terms, increases
the amount of \inertia": to induce \low performers" to switch, the di�erence in
outcomes must be more substantial. This in turn reduces (increases) the selective
pressure on less (more) successful strategies, which implies that their equilibrium
shares should be lower (higher), and this is what happens. In the �rst, contribution-
driven, equilibrium, the proportions of all four sorts of contributors are smaller - the
di�erences, however, are from the third decimal place onward - while the proportion
of �rst order free riders more than doubles, from 0.46 percent to 0.91. In the second,
the share of �rst order free riders falls more than 2 percent, from 97.7 percent to
95.2, while the shares of the four sorts of contributors rise a little bit.

In a similar vein, an increase in �a increases the likelihood that an individual
will fall short of her/his aspiration - that is, become dissasti�ed - no matter how
successful (in relative terms, at least) their approach to MSR, so that here, too, one
would expect the shares of more successful strategies to decrease, and vice versa,
and this is indeed the case.

To be consistent with our experimental data, however, contributors must sur-
vive for more than some small and perhaps contrived set of initial conditions. That
is, the �rst equilibrium should have a substantial basin of attraction. Given the
dimension of (8.3), however, the two basins are di�cult to characterize in graph-
ical terms, and some sort of \compression" is needed. To this end, Figure 9
plots the proportions of �rst and second order free riders for the initial conditions
p1 = 0:1; 0:2; : : : ; 1 and pi = (1 � pi)=4 for all i 6= 1 - that is, when the shares of
the four sorts of contributors are equal. When the share of �rst order free riders is
about a quarter or smaller of the population, almost all of these will be driven to
abandon such behavior, but when the share exceeds this, there is convergence to
the no contribution equilibrium. In some cases, however, convergence is slow, and
exhibits the same sort of sudden shifts illustrated in Figure 8b. On the path marked
AA, for example, which tends, in the long run, to the no contribution equilibrium,
the number of �rst order free riders is still falling at t = t1, when the other paths are
close to their eventual rest points. Furthemore, when it happens, the \turnaround"
on AA is rapid, as the movement between t1 and t2 illustrates.

Figure 10, on the other hand, plots the same proportions for the initial con-
ditions p2 = 0:1; 0:2 : : : ; 1 and pi = (1 � pi)=4 for all i 6= 2, so that the initial
proportions of �rst order free riders and contributors who punish are equal. In this
case, when the initial share of second order free riders is a third or less, �rst order
free riders (almost) vanish, but when it is exceeds this threshold, there is (some-
times slow and roundabout) convergence to the no contribution equilibrium. What
both Figures 9 and 10 reveal, however, is that the survival of reciprocal behavior,
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both strong and social, is not limited to a small neighborhood of initial conditions.

9. Conclusion

This paper provides an integrated - survey, experiment and model - perspective on
\social reciprocity," which we de�ne as the willingness to enforce norms regardless of
group a�liation or social distance. Furthermore, it shows that such behavior should
be distinguished from more familiar (conditional, strong) forms of reciprocity, and
also from altruism. In some sense, then, the model rationalizes the now familiar
claim that \it (sometimes) takes a village" but also, on the basis of the second stable
equilibrium, the observation that even villages can sometimes fall short.

We do not pretend, of course, that ours is a complete characterization, and at
least three possible extensions come to mind. First, at a conceptual level, the paper
considers negative but not positive manifestations of reciprocal behavior - that is,
cases in which reciprocators punish free riders rather than reward other contributors
- but there are some environments in which the latter are more important. This in
turn underscores the need to consider more speci�c \frames" or situations. How,
for example, does social reciprocity matter in the workplace?

Second, at a theoretical level, the model is intended to serve as a point of
departure, and not a canonical treatment. The two sorts of learners in the model, for
example, are described as either sophisticated or crude, but even the sophisticated
learners' rule is a simple one, and it remains to show whether our results can
be extended to models with still more sophisticated cognition. It is possible, for
example, that another set of rules would be consistent with both the sudden collapse
of contribution norms, as ours are, but also with their sudden rebirth, as evidenced
in some sessions of our experiment.

Third, in terms of the experiment, it remains to be seen whether similar results
obtain with other subject pools - workers, for example - for which reciprocal behavior
is more important.

29



References

Acheson, J. (1993). Capturing the commons: Legal and illegal strategies. The po-
litical economy of customs and culture: Informal solutions to the commons problem.
T. Anderson and R. Simmons Eds. Lanham, Rowman and Little�eld: 69-84.

Andreoni, J. (1988). Why free ride? Strategies and learning in public good experi-
ments. Journal of Public Economics 37: 291-304.

Axelrod, R. (1984). An evolutionary approach to norms. American Political Science
Review 80: 1095-1111.

Banarjee, A. and J. Weibull. (1994). Evolutionary selection and rational behavior.
Rationality and Learning in Economics. A. Kirman and M. Salmon Eds. Oxford,
Basil Blackwell.

Binmore, K. G. and L. Samuelson. (1994). An economist's perspective on the
evolution of norms. Journal of Institutional and Theoretical Economics 150: 45-63.

Binmore, K. G. and L. Samuelson. (1999). Evolutionary drift and equilibrium
selection. Review of Economic Studies 66: 363-393.

Binmore, K. G., J. Gale and L. Samuelson. (1995). Learning to be imperfect: the
ultimatum game. Games and Economic Behavior 8: 56-90.

Borofsky, G., G. Stollak and L. Messe (1971). Sex di�erences in bystander reactions
to physical assault. Journal of Experimental Social Psychology 7: 313-318.

Bowles, S., J. Carpenter and H. Gintis (2001). Mutual monitoring in teams: The
e�ects of residual claimancy and reciprocity. mimeo.

Bowles, S. and H. Gintis (1999). The evolution of strong reciprocity. Santa Fe
Institute Working Paper.

Broom, M., C. Cannings and G. T. Vickers (1997). Multi-player matrix games.
Bulletin of Mathematical Biology 59: 931-952.

Carpenter, J. (2001). Punishing free-riders: How group size a�ects mutual moni-
toring and collective action. mimeo.

Carpenter, J. and P. H. Matthews. (2001). No switchbacks: Rethinking aspiration-
based dynamics in the miniature ultimatum game. mimeo.

Carpenter, J., P. H. Matthews and O. Ong'ong'a. (2002). Why punish? Social
reciprocity and the enforcement of prosocial norms. mimeo.

Craig, B. and J. Pencavel (1995). Participation and productivity: A comparison
of worker cooperatives and conventional �rms in the plywood industry. Brookings
Papers: Microeconomics: 121-160.

Elster, J. (1989). Social norms and economic theory. Journal of Economic Perspec-
tives 3(4): 99-117.

Fehr, E. and S. Gaechter (2000). Cooperation and punishment in public goods
experiments. American Economic Review 90(4): 980-994.

30



Ghemawat, P. (1995). Competitive advantage and internal organization: Nucor
revisited. Journal of Economics and Management Strategy 3(4): 685-717.

Gintis, H. 2000. Strong reciprocity and human sociality. Journal of Theoretical
Biology 206: 169-179.

G�uth, W. and Kliemt, H. 1993. Competition or cooperation: on the evolutionary
economics of trust, exploitation and moral attitudes, Metroeconomica, 45: 155-187.

Harrald, P. and Morrison, W. G. 2001. Sleepers, thresholds, and gateways: drift
and stability in dynamic evolutionary games, Wilfred Laurier University Working
Paper.

Isaac, R. M., J. Walker and S. Thomas (1984). Divergent evidence on free-riding:
An experimental examination of possible explanations. Public Choice 43(1): 113-
149.

Latane, B. and J. Darley (1970). The unresponsive bystander: Why doesn't he
help? New York, Appleton-Century-Crofts.

Ledyard, J. (1995). Public goods: A survey of experimental research. The hand-
book of experimental economics. J. Kagel and A. Roth Eds. Princeton, Princeton
University Press: 111-194.

Moir, R. (1998). Spies and swords: Costly monitoring and sanctioning in a common-
pool resource environment. mimeo.

Mudd, S. (1968). Groups sanction severity as a function of degree of behavior
deviation and relevance of norm. Journal of Personality and Social Psychology
8(3): 258-260.

Mudd, S. (1972). Group sanction severity as a function of degree of behavior de-
viation and relevance of norm: Replication and revision of model. The Journal of
Psychology 80: 57-61.

Nachbar, I. (1990). Evolutionary selection in dynamic games. International Journal
of Game Theory 19: 59-90.

Ostrom, E. (1992). Crafting institutions for self-governing irrigation systems. San
Francisco, ICS Press.

Ostrom, E., R. Gardner and J. Walker (1994). Rules, games and common-pool
resources. Ann Arbor, University of Michigan Press.

Ostrom, E., J. Walker and R. Gardner (1992). Covenants with and without a sword:
Self-governance is possible. American Political Science Review 86: 404-417.

Page, T. and L. Putterman (2000). Cheap talk and punishment in voluntary con-
tribution experiments. mimeo.

Sampson, R., S. Raudenbush and F. Earls (1997). Neighborhoods and violent crime:
A multilevel study of collective e�cacy. Science 277(August 15): 918-924.

31



Sefton, M., R. Shupp and J. Walker (2000). The e�ect of rewards and sanctions in
provision of public goods. mimeo.

Sethi, R. (1996). Evolutionary stability and social norms, Journal of Economic
Behavior and Organization, 29: 113-140.

Sethi, R. and E. Somanathan (2001). Understanding reciprocity, mimeo, forthcom-
ing, Journal of Economic Behavior and Organization.

Shotland, L. and M. Straw (1976). Bystander response to an assault: When a man
attacks a woman. Journal of Personality and Social Psychology 34(5): 990-999.

Taylor, P. and Jonker, L. (1978). Evolutionarily stable strategies and game dynam-
ics. Mathematical Biosciences 40: 145-156.

32



Appendix A: Survey Vignettes

STRONG RECIPROCITY: You and a number of other newly hired people are
employed by an auto manufacturer and assigned to work in teams of four. Everyone
on the team is paid equally and the pay level is determined entirely by how many
cars your work team produces. On the �rst day of work, you and the other three
members of your team divide up the production tasks equally. Over the course of
the next month, you and two other members of your group work regularly and hard.
However, the fourth member of the team often hides in a storage room and reads
a book instead of working on cars. This means the other three of you must work
harder to make the same number of cars as the other four-person teams. At the
end of the month, you and everyone else in your group earn the same amount of
money.

SOCIAL RECIPROCITY (LOW COST): You and a number of other newly
hired people are employed by an auto manufacturer and assigned to work in teams
of four. Everyone on the team is paid equally and the pay level is determined
entirely by how many cars your work team produces. On the �rst day of work, you
and the other three members of your team divide up the production tasks equally.
Each of you works equally hard making cars. However, you notice that a member of
the group that occupies the workspace next to yours often hides in a storage room
and reads a book instead of working on cars. While your earnings are una�ected by
what this member of the other team is doing, the members of his team must work
harder and share their income with this person.

SOCIAL RECIPROCITY (HIGH COST): You and a number of other newly
hired people are employed by an auto manufacturer and assigned to work in teams
of four. Everyone on the team is paid equally and the pay level is determined
entirely by how many cars your work team produces. On the �rst day of work, you
and the other three members of your team divide up the production tasks equally.
Each of you works equally hard making cars. However, you notice that a member
of the group that occupies the workspace next to yours often hides in a storage
room and reads a book instead of working on cars. This person sees that you have
noticed that he is not working. He approaches you and says, "If you tell anyone
about this, I will do something bad to you." While your earnings are una�ected by
what this member of the other team is doing, the members of his team must work
harder and share their income with this person.
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Appendix B: Experiment Participant Instructions

You have been asked to participate in an experiment. For participating today and
being on time you have been paid $5. You may earn an additional amount of money
depending on your decisions in the experiment. This money will be paid to you,
in cash, at the end of the experiment. When you click the BEGIN button you will
be asked for some personal information. After everyone enters this information we
will start the instructions for the experiment.

During the experiment we will speak in terms of Experimental Monetary Units
(EMUs) instead of Dollars. Your payo�s will be calculated in terms of EMUs and
then translated at the end of the experiment into dollars at the following rate: 30
EMUs = 1 Dollar.

In addition to the $5.00 show-up fee, each participant receives a lump sum payment
of 15 EMUs at the beginning of the experiment.

The experiment is divided into 10 di�erent periods. In each period 8 participants
are divided into two groups of 4. The composition of the groups will remain the
same for the entire experiment. Therefore, in each period your group will consist
of the same four participants.

Each period of the experiment has three stages.

Stage One

At the beginning of every period each participant receives a 25 EMU endowment.
In Stage One each of you will decide how much of the 25 EMUs to contribute
to a group project and how much you want to keep for yourself. You are asked
to contribute whole EMU amounts (i.e. a contribution of 5 EMUs is alright, but
3.85 should be rounded up to 4). Your payo� and the payo� of everyone else in
your group will be determined by how much each member contributes to the group
project and how much each member keeps.

To record your decision, you will type EMU amounts in two text-input boxes, one
for the group project labeled GROUP ALLOCATION and one for yourself labeled
PRIVATE ALLOCATION. These boxes will be yellow. Once you have made your
decision, there will be a green SUBMIT button that will record your decision.

After all the participants have made their decisions, each of you will be informed of
your gross earnings for the period.

GROSS EARNINGS

Your Gross Earnings will consist of two parts:
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(1) Earnings from your Private Allocation. You are the only bene�ciary of
EMUs you keep. More speci�cally, each EMU you keep increases your earnings by
one.

(2) Earnings from the Group Project. Each member of the group gets the
same payo� from the group project regardless of how much he or she contributed.
The payo� from the group project is calculated by multiplying 0.5 times the total
EMUs contributed by the members of your group.

Your Gross Earnings can be summarized as follows:

1� (EMUs you keep) + 0:5� (Total EMUs contributed by your group)

Lets discuss three examples.

Example 1: Say each member of your group contributes 15 of their 25 EMUs. In
this case, the group total contribution to the project is 4 � 15 = 60 EMUs. Each
group member earns 0:5 � 60 = 30 EMUs from the project. The gross earnings of
each member will then be the number of EMUs kept, 25�15 = 10, plus the earnings
from the group project, 30 EMUs, for each member. Hence, each member woul

Example 2: Now say everyone in the group contributes 5 EMUs. Here the group
total contribution will be 20 and each member will earn 0:5� 20 = 10 EMUs from
the group project. This means that the total earnings of each member of the group
will be 20 (the number of EMUs kept) plus 10 (earnings from the group project)
which equals 30 EMUs.

Example 3: Finally, say three group members contribute all their EMUs and one
contributes none. In this case, the group total contribution to the project is 3�25 =
75 EMUs. Each group member earns 0:5� 75 = 37:5 EMUs from the project. The
three members who contributed everything will earn 0+37:5 = 37:5 EMUs and the
one member who contributed nothing will earn 25 + 37:5 = 62:5 EMUs.

Stage Two

In stage two you will be shown the allocation decisions made by all the other
participants, and they will see your decision. Also at this stage you will be able to
reduce the earnings of other participants, if you want to, and the other participants
will be able to reduce your earnings. You will be shown how much each member
of your group kept and how much they allocated to the group project. You will
also be shown how much each member of the other group kept and how much they
contributed to their group project. Your allocation decision will also appear on
the screen and will be labeled `YOU.' Please remember that the composition of
your group remains the same during each period and therefore every person in your
group during this period will also be in your group next period.
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At this point you will decide how much (if at all) you wish to reduce the earnings
of the other participants. You reduce someone's earnings by typing the number of
EMUs you wish to spend to reduce that persons earnings into the input-text box
that appears below that participants allocation decision..

For each EMU you spend you will reduce the earnings of the other participant by 2
EMUs. You can spend as much of your accumulated earnings as you wish to reduce
the earnings of the other participants.

Consider this example: suppose you spend 2 EMUs to reduce the earnings of a
participant in the other group, you spend 9 EMUs reducing the earnings of a par-
ticipant in your group, and you dont spend anything to reduce the earnings of the
remaining participants. Your total cost of reductions will be (2+9+0) or 11 EMUs.
When you have �nished you will click the blue DONE button.

How much a participant's gross earnings are reduced is determined by the total
amount spent by all the other participants in the session. If a total of 3 EMUs is,
then this persons earnings will be reduced by 6 EMUs. If the other participants
spend 4 EMUs in total, the persons earnings would be reduced by 8 EMUs, and so
on.

Stage Three

In stage three, you will be shown the total EMUs spent on reductions by each other
participant. You will then be able to spend an additional amount of money to
reduce the earnings of the other participants, if you choose to do so.

Again, for each EMU you spend you will reduce the earnings of the other participant
by 2 EMUs. You can spend as much of your accumulated earnings as you wish to
reduce the earnings of each of the other participants. When you have click the blue
DONE button.

Nobodys earnings will be reduced below zero by the other participants. For example,
if your gross earnings were 40 EMUs and the other participants spent 50 EMUs to
reduce your earnings, your gross earnings would be reduced to zero and not minus
sixty.

Your NET EARNINGS after the third stage will be calculated as follows:

(Gross Earnings from Stage One)�(2� the number of EMU spent

on reductions directed towards you)

�(your expenditure on reductions directed

at other participants)

If you have any questions please raise your hand. Otherwise, click the red FIN-
ISHED button when you are done reading.
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Appendix C. MSR's Symmetric Nash Equilibria (SNE)

We shall �rst show that the two common pro�les identi�ed in the text are indeed
SNEs, and then show that no others are possible. The argument that the �rst
pro�le - that is, the case in which all four choose to free ride - satis�es this criterion
is trivial, so we shall focus on the second, in which all four randomize over the four
pure contribution strategies. Consider the common mixture �i = (0; p2; p3; p4; p5)
for all i = 1; : : : ; 4. There is no incentive for j to deviate to some other mixture
over the four contribution strategies - she would continue to earn 75 - so that
attention can be limited to strategies of the form �j = (pj

1
; pj

2
; pj

3
; pj

4
; pj

5
) where

pj
1
> 0, with payo� �j(�j ; �i; �i; �i). It follows that �j = pj

1
�j
1
+ (1 � pj

1
)75 =

75 + pj
1
(�j

1
� 75), where �j

1
is what j can expect to earn as a unilateral free rider,

and therefore that there will be no incentive to deviate from �i if �j < 75 or,
substituting in the previous expression, �j

1
< 75. Under what circumstances will this

condition be met? That is, under what conditions can the unilateral free rider expect
to receive less than 75? We �rst observe that she will earn 87.5 with likelihood
p2(p2+p3)

2+p4(p2+p3)
2 = (p2+p4)(p2+p3)

2, where the �rst term is the product
of the likelihood p2 that her partner will choose to contribute but not punish and the
likelihood that both members of the outgroup will either contribute but not punish
or contribute and punish insiders. Following similar logic, she will receive 67.5 with
likelihood 2p2(p2+p3)(p4+p5)+p3(p2+p3)

2+2p4(p2+p3)(p4+p5)+p5(p2+p3)
2, 47.5

with likelihood p2(p4+p5)
2+2p3(p2+p3)(p4+p5)+p4(p4+p5)

2+2p5(p2+p3)(p4+p5),
and 27.5 with likelihood p3(p4 + p5)

2 + p5(p4 + p5)
2. Gathering terms, we have:

�j
1
= 87:5p2(p2 + p3)

2 + 87:5p4(p2 + p3)
2 + 135p2(p2 + p3)(p4 + p5)

+ 67:5p3(p2 + p3)
2 + 135p4(p2 + p3)(p4 + p5) + 67:5p5(p2 + p3)

2

+ 47:5p2(p4 + p5)
2 + 95p3(p2 + p3)(p4 + p5) + 47:5p4(p4 + p5)

2

+ 95p5(p2 + p3)(p4 + p5) + +27:5p3(p4 + p5)
2 + 27:5p5(p4 + p5)

2

or, after factoring:

�j
1
= (p2 + p4)[87:5(p2 + p3)

2 + 135(p2 + p3)(p4 + p5) + 47:5(p4 + p5)
2]

(p3 + p5)[67:5(p2 + p3)
2 + 95(p2 + p3)(p4 + p5) + 27:5(p4 + p5)

2]

= (p2 + p4)[87:5(p2 + p3) + 47:5(p4 + p5)][p2 + p3 + p4 + p5]

(p3 + p5)[[67:5(p2 + p3) + 27:5(p4 + p5)][p2 + p3 + p4 + p5]

Since p2 + p3 + p4 + p5 = 1, this can be rewritten:

�j
1
= (p2 + p3)(87:5(p2 + p3) + 67:5(p3 + p5))

+ (p4 + p5)(47:5(p2 + p4) + 27:5(p3 + p5))

= 87:5(p2 + p4) + 67:5(p3 + p5)� 40(p4 + p5)

= 87:5p2 + 67:5p3 + 47:5p4 + 27:5p5
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It follows, therefore, that �j
1
< 75 if and only if:

87:5p2 + 67:5p3 + 47:5p4 + 27:5p5 < 75

or, since p2 = 1� p3 � p4 � p5 in this case:

20p3 + 40p4 + 60p5 > 12:5

or:
p3 + 2p4 + 3p5 > 0:625

which is the condition in the text.
The remaining candidates for SNE are those in which players randomize over

free riding and one or more of the contribution strategies. To show that none of
these are in fact viable, we note that attention can �rst be restricted to strategies
of the form �i = (p1; 1 � p1; 0; 0; 0): if there is some positive likelihood that each
of the others will free ride, then pro�les that sometimes call for the punishment of
free riders will fare worse than those that do not. The members of this restricted
set can also be ruled out, however, since in the absence of punishment, contribution
is dominated.
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Appendix D. The Stability Properties of MSR's Rest Points

Since the domain of (8.3), the four dimensional simplex, is invariant, we shall limit
attention to the �rst �rst four equations and substitute for p5 = 1 � p1 � p2 �
p3 � p4 � p5. Rewriting (8.3) as _p = (1 � �)f(�) + �g(�), the (i; j)th element of the
Jacobian F of the selection function f(�) is:

fi;i = �c�1
�
(�i � ��) + pi

@(�i � ��)

@pi

�

fi;j = �c�1pi
@(�i � ��)

@pj
j 6= i

The fact that @�i=@pj = 0 for i and j 6= 1 simpli�es the calculation of F , so that:

F = �c�1

0
B@

�1 p1(60� 85p1) p1(40� 55p1) p1(20� 25p1)
p2(�2 � 85p1) p1(�2 � 85p2) �55p1p2 �25p1p2

p3(�2 � 85p1 � 10) �85p1p3 p1(�2 � 10� 55p3) �25p1p3
p4(�2 � 85p1 � 20) �85p1p4 �55p1p4 p1(�2 � 20� 25p4)

1
CA

where
�1 = (�47:5 + 275p1 + 60p2 + 40p3 + 20p4)

� p1(255p1 + 170p2 + 110p3 + 50p4)

�2 = 72:5� 85p1 � 85p2 � 55p3 � 25p4

The (i; j)th element of the Jacobian G of the drift function g(�) is likewise:

gi;i = 0:25�a�1[(�5 � �a)�
X
k 6=i

pk
@�k
@pi)

� (1�
X
k

pk)
@�5
@pi

]� 1 + �a�1[pi
@�i
@pi

+ �i]

gi;j = 0:25�a�1[(�5 � �i)�
X
k 6=i

pk
@�k
@pj

� (1�
X
k

)
@�5
@pj

+ �a�1pi
@�i
@pj

which leads, after some simpli�cation, to:

gi;j = �a�1

0
B@

�3 � 1:25�a 53:75p1 36:25p1 18:75p1
�4 � 46:875p2 �5 � 1:25�a �13:75p1 �6:25p1
�4 � 47:5p3 �21:25p1 �5 � 5p1 � 1:25�a �6:25p1
�4 � 71:875p4 �21:25p1 �13:75p1 �5 � 10p1 � 1:25�a

1
CA

where
�3 = 61:875 + 13:75p1 + 53:75p2 + 36:25p3 + 18:75p4

�4 = 27:5� 42:5p1 � 21:25p2 � 13:75p3 � 6:25p4

�5 = 93:75� 68:125p1

The (i; j)th element of the Jacobian J of the perturbed selection mechanism is
therefore (1� �)fi;j + �gi;j .
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For example, in the case where � = 0 - that is, there is no drift - the Jacobian
evaluated at p1 = 0; p2 = p3 = p4 = 0 is:

J =

0
B@
�0:375 �0:250 �0:150 �0:050

0 �0:125 0 0
0 0 �0:225 0
0 0 0 �0:325

1
CA

J is triangular, so the diagonal entries, �0:375;�0:125;�0:225 and�0:325, are the
eigenvalues. Since all of these are negative and real, the no contribution equilibrium
is stable in the absence of noise, consistent with intuition. If � = 0 but p1 = 0, on
the other hand, the Jacobian becomes:

J =

0
B@

�0:475 + 0:600p2 + 0:400p3 + 0:200p4 0 0 0
p2(0:725� 0:850p2 � 0:550p3 � 0:250p4) 0 0 0
p3(0:625� 0:850p2 � 0:550p3 � 0:250p4) 0 0 0
p4(0:525� 0:850p2 � 0:550p3 � 0:250p4) 0 0 0

1
CA

with eigenvalues �0:475+ 0:600p2+0:400p3+0:200p4 and 0, repeated three times.
When p3+2p4+3p5 > 0:625, the abovementioned condition for a SNE, is satis�ed,
the �rst of these is negative, but the repeated zero eigenvalues preclude a de�nitive
characterization.

With the introduction of aspiration-driven learners or \noise," however, the
properties of the three rest points are not di�cult to characterize. In the case
� = 0:01, for example, the Jacobian J associated with the �rst equilibrium, p1 =
0:004632, p2 = 0:318817, p3 = 0:258326 and p4 = 0:217130, is equal to:

J =

0
B@
�0:131021 0:002758 0:001839 0:000921
0:078902 �0:003236 �0:000810 �0:003684
0:038637 �0:001017 �0:003106 �0:000299
0:010700 �0:000856 �0:000554 �0:003164

1
CA

for which the eigenvalues, �0:133335, �0:001695, �0:003000, �0:002487, are all
real and negative. Likewise, for the second equilibrium, p1 = 0:976659, 0:010281,
0:005700, 0:003943, the Jacobian is:

J =

0
B@
�0:336621 �0:217290 �0:129080 �0:040871
�0:011132 �0:132340 �0:006810 �0:003096
�0:007375 �0:006760 �0:224100 �0:001988
�0:005943 �0:005316 �0:003440 �0:319199

1
CA

and this, too, has real and negative eigenvalues, �0:121120, �0:361670, �0:312956
and �0:216488. For the third equilibrium, p1 = 0:019156, 0:537293, 0:207271,
0:128402, the Jacobian is:

J =

0
B@
�0:195352 0:011173 0:007455 0:003738
0:046322 �0:009908 �0:005631 �0:002559
�0:001950 �0:003382 �0:005315 �0:000995
�0:013791 �0:002111 �0:001366 �0:005777

1
CA
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and while three of the eigenvalues are once more real and negative, �0:037672,
�0:003307 and �0:005400, the fourth is real and positive, 0:005954.
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Strong Social Social
Reciprocity Reciprocity Reciprocity

(Low Cost) (High Cost)

The shirker should 97 96 96
be punished.

I would confront 90 43 51
the shirker.

Notes: The sample size n was 79, and responses were given on a seven point Likert
scale.

Table 1. Why Punish? Material Harm or Norm Violation
(Percent of Participants Responding A�rmatively)
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Dependent Variable = Punishmentij
(All regressions include random e�ects.)

(1) (2) (3) (4)

All Data All Data Ingroup Outgroup

Constant 0.08 0.36*** -0.08 0.06
(0.13) (0.12) (0.22) (0.04)

FreeRide 1.74*** { 1.93** 0.20**
(0.19) (0.80) (0.09)

FRDummy { 1.29*** 0.82 0.31***
(0.16) (0.71) (0.08)

Outgroup -0.38*** -0.38*** { {
(0.13) (0.13)

Strong 0.25 0.23 { {
(0.22) (0.22) - -

Adjusted R2 0.02 0.02 0.02 0.04

Wald �2 104.08 80.98 29.84 77.12

Notes: Standard errors in parantheses. *** denotes signi�cance at the 0.01 level,
** at the 0.05 level, and * at the 0.10 level.

Table 2. Why Punish? Material Harm or Norm Violation
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Average Payo� Reduction Due To Punishment For Free Riders

Period 1 2 3 4 5 6 7 8 9 10

Free Rider < 6.22 5.72 8.00 7.90 12.78 5.21 8.62 5.34 13.34 26.66

Group Average

Social Reciprocity

Free Rider < 7.70 11.60 12.00 14.26 21.26 6.00 8.34 5.60 21.10 46.00

1/3 Endowment

Free Rider < 6.40 9.60 12.22 11.26 7.34 3.76 6.28 10.80 7.14 22.00

Group Average

Strong Reciprocity

Free Rider < 8.86 7.60 10.34 6.76 6.76 3.76 9.66 10.80 6.28 15.60

1/3 Endowment

Wilcoxon Test z = 1:98; p = 0:05

Kolmogorov-Smirnov Test KS = 0:18; p = 0:03

Table 3. How Severely Are Free Riders Punished?
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Dependent Variable = PublicContributiont

(All regressions are tobit and include random e�ects.)

(1) (2) (3)

Constant 8.35*** 6.97*** 8.35***
(2.01) (1.77) (1.85)

Publict�1 0.74*** 0.70*** 0.70***
(0.09) (0.09) (0.09)

Punishmentt�1 0.45*** 0.43*** -0.24
(0.15) (0.15) (0.29)

Social { 2.99*** -0.91-
(1.47) (1.81)

Social�
Punishmentt�1 { { 0.87***

(0.31)

Wald �2 63.91 81.26 86.74

Notes: Standard errors in parantheses. *** denotes signi�cance at the 0.01 level,
** at the 0.05 level, and * at the 0.10 level.

Table 4. Do Free Riders Respond To Punishment?
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� = 0:10 � = 0:01 � = 0:001 � = 0:0001
First Order

Free Riders 0.044554 0.004632 0.000464 0.000046

Second Order

Free Riders 0.295840 0.318817 0.321176 0.321411

Strong

Reciprocators 0.247643 0.258326 0.259423 0.259532

Pure Social

Reciprocators 0.212951 0.217130 0.217587 0.217633

Social

Reciprocators 0.199011 0.201095 0.201351 0.201378

Eigenvalues -0.129493 -0.133335 -0.134637 -0.134777

-0.020147 -0.001695 -0.000166 -0.000017

-0.033345 -0.003000 -0.000296 -0.000030

-0.028186 -0.002497 -0.000246 -0.000025

First Order

Free Riders 0.649904 0.976659 0.999772 0.999773

Second Order

Free Riders 0.158916 0.010281 0.001003 0.001000

Strong

Reciprocators 0.084318 0.005700 0.000557 0.000056

Pure Social

Reciprocators 0.057382 0.003943 0.000386 0.000038

Social

Reciprocators 0.0494788 0.003416 0.000334 0.000033

Eigenvalues -0.043534 -0.121120 -0.124628 -0.124963

-0.228658 -0.361696 -0.373634 -0.374864

-0.106535 -0.312956 -0.323839 -0.224919

-0.179235 -0.216488 -0.224182 -0.324885

First Order

Free Riders 0.308332 0.019156 0.001857 0.000185

Second Order

Free Riders 0.337351 0.537293 0.551069 0.552410

Strong

Reciprocators 0.159996 0.207271 0.209367 0.209565

Pure Social

Reciprocators 0.104866 0.128402 0.129233 0.129311

Social

Reciprocators 0.089453 0.107878 0.108474 0.108529

Eigenvalues 0.024470 -0.037671 -0.034198 -0.033810

-0.103800 0.005954 0.000654 0.000066

-0.083164 -0.003308 -0.000320 -0.000032

-0.029021 -0.005400 -0.000521 -0.000052

Table 5. Rest Points and Eigenvalues for MSR
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�c = 100 �c = 150 �c = 200

First Order
Free Riders 0.004632 0.006909 0.009159
Second Order
Free Riders 0.318817 0.317525 0.316247
Strong
Reciprocators 0.258326 0.257726 0.257133
Pure Social
Reciprocators 0.217130 0.216882 0.216638
Social
Reciprocators 0.201095 0.200958 0.200824

First Order
Free Riders 0.976659 0.964687 0.952496
Second Order
Free Riders 0.010281 0.015567 0.020958
Strong
Reciprocators 0.005700 0.008621 0.011593
Pure Social
Reciprocators 0.003943 0.005961 0.008013
Social
Reciprocators 0.003416 0.005164 0.006941

Table 6. The Comparative Statics of Switching Costs
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�a = 100 �a = 150 �a = 200

First Order
Free Riders 0.004632 0.009172 0.011406
Second Order
Free Riders 0.318817 0.316239 0.314967
Strong
Reciprocators 0.258326 0.257129 0.256538
Pure Social
Reciprocators 0.217130 0.216636 0.216395
Social
Reciprocators 0.201095 0.200824 0.200693

First Order
Free Riders 0.976659 0.968470 0.964291
Second Order
Free Riders 0.010281 0.013895 0.015741
Strong
Reciprocators 0.005700 0.007698 0.008717
Pure Social
Reciprocators 0.003943 0.005323 0.006028
Social
Reciprocators 0.003416 0.004612 0.005222

Table 6. Comparative Statics of Dissatisfaction
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Figure 1: The Social Reciprocity Treatment Punishment Screen Shot
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Figure 2: Average Contributions and Expenditures on Punishment

Note: VCM is the standard voluntary contribution mechanism, 4 groups; Strong is
the treatment where only ingroup punishment is allowed, 6 groups; and Social is
the treatment where players can punish both ingroup and outgroup.
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Figure 3: Cumulative Distribution of Punishment Coe�cients - Propensities to Punish

Note: These are cumulative distributions of beta coe�cients on the regression of
punishment assigned on degree ot target's free riding. MM indicates the Strong
Treatment, SRin is ingroup punishment in the Social treatment, and SRout is out-
group punishment in the Social treatment.
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Figure 4: The E�ciency Gains Of Social Reciprocity

Note: We graph the average ratio payo�s in the treatments to the control. The
divisor is the average payo� in the VCM, Strong is the treatment where only ingroup
punishment is allowed, and Social is the treatment where players can punish both
ingroup and outgroup.
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Social Reciprocator

56%

Altruist (Saint)

14%

Both

30%

Figure 5: States Reasons For Outgroup Punishment

Note: Social Reciprocators are people who said they punished outside their groups
to get back at Free Riders, in general. Saintly Altruists are people who said they
punished outgroup to help others. Those categorized as Both answered a�rmatively
to both questions.
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Figure 6: Evolution from an Initial Balanced Population
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Figure 7: Almost Monotone Evolution To The No Contribution Equilibrium
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Figure 8a: A Plateau Near The Unstable Equilibrium
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p1

p2

p3    p4    p5

Figure 8b: \Falling O� The Plateau": The Long Run
Instability of The Third Rest Point
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Figure 9: Basins of Attractions - First View
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Figure 10: Basins of Attraction - Another View
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